PydanticAI
Logfire supports instrumenting PydanticAI with the
logfire.instrument_pydantic_ai()
method:
import logfire
from pydantic_ai import Agent, RunContext
logfire.configure()
logfire.instrument_pydantic_ai()
roulette_agent = Agent(
'openai:gpt-4o',
deps_type=int,
result_type=bool,
system_prompt=(
'Use the `roulette_wheel` function to see if the '
'customer has won based on the number they provide.'
),
)
@roulette_agent.tool
async def roulette_wheel(ctx: RunContext[int], square: int) -> str:
"""check if the square is a winner"""
return 'winner' if square == ctx.deps else 'loser'
# Run the agent
success_number = 18
result = roulette_agent.run_sync('Put my money on square eighteen', deps=success_number)
print(result.data)
#> True
result = roulette_agent.run_sync('I bet five is the winner', deps=success_number)
print(result.data)
#> False
The above example displays like this in Logfire:
You can use PydanticAI with a large variety of LLMs, the example
just happens to show gpt-4o
.
You can also instrument a specific agent with logfire.instrument_pydantic_ai(agent)
.
For more information, see the logfire.instrument_pydantic_ai()
reference or the PydanticAI docs on instrumenting with Logfire.